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Abstract. Most models of aggregating expert judgments assume that there is some precise 
probability distribution characterizing the system behavior and expert information allows us to 
compute parameters of this distribution. However, judgments elicited from experts are usually 
imprecise and unreliable due to the limited precision of human assessments, and any assumption 
concerning a certain distribution in combination with imprecision of judgments may lead to 
incorrect results. To take into account the imprecision and unreliability of judgments, a model of 
combining and processing the expert judgments about quantiles of an unknown probability 
distribution is proposed in this paper. Many results are obtained in the explicit form and are very 
simple from the computational point of view. Numerical examples illustrate the proposed models. 
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1. Introduction 
Judgments elicited from human experts may be a very important part of information about 

systems on which limited experimental observations are possible. Several methods for elicitation, 
assessment and pooling of this type of information have been proposed in [1, 3, 5, 16, 17]. In order 
to get useful information from the experts, a proper uncertainty modeling of pieces of data supplied 
by experts has to be used. As pointed out in [4, 11], the uncertainty models play a central role in the 
use of expert judgments, because no human being would claim that he is absolutely sure about his 
judgments or advice. Therefore, it is necessary to incorporate into any model the individual 
expert's uncertainty about his advice, the decision maker's uncertainty about the quality of the 
expert(s), and how these two kinds of uncertainty interact and impact on the credibility of the final 
results. 

Judgments elicited from experts are usually imprecise and unreliable due to the limited 
precision of human assessments. When several experts supply judgments or assessments about a 
system, their responses are pooled so as to derive a single measure of the system behavior. Most 
methods of aggregating these assessments assume that there is some precise probability 
distribution characterizing the system behavior and available expert information allows us to 
compute parameters of this distribution. However, any assumption concerning a certain 
distribution in combination with imprecision of expert judgments may lead to incorrect results 
which often cannot be validated due to the lack of experimental observations. Therefore, it is 
necessary to aggregate the expert judgments without any assumptions about probability 
distributions and to use only the information which is available. In order to cope with uncertainty 
and vagueness of available information, it is proposed to apply the imprecise probability theory 
(also called the theory of lower previsions [14], the theory of interval statistical models [8], the 
theory of interval probabilities [15]), whose general framework is provided by upper and lower 
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previsions. Some examples of combining the partial and heterogeneous information in reliability 
analysis by means of the framework of imprecise probabilities can be found in [6, 12, 13]. 

However, the opinion of reliable experts should be more important than those of unreliable 
ones. Various methods of the pooling of assessments, taking into account the quality of experts, are 
available in the literature [3, 9, 10, 16]. These methods use the concept of precise probabilities for 
modelling the uncertainty. It should be noted that the models of aggregating expert judgments 
taking into account the quality of experts can be considered in a framework of hierarchical 
uncertainty models which are rather common in uncertainty theory.  

To cope with the lack of precise expert knowledge a framework of the possibility theory has 
been applied to combining judgments [4, 11]. However, this approach requires assuming a certain 
type of a possibility distribution to formalize the expert information. Moreover, the obtained 
results are often too imprecise in order to use them in practice. Therefore, simplified models of 
combining the common expert judgments about quantiles of an unknown probability distribution 
are proposed in this paper. Many results are obtained in the explicit form and are very simple from 
the computational point of view. 

It is worth noticing that the considered models of uncertainty differ from standard 
uncertainty models used in the imprecise probability theory (see section "Preliminary definitions"), 
where there exists an interval of previsions of a certain gamble. In the models of quantiles, the 
gamble can be viewed as a set of gambles for which the same previsions are defined. Various 
numerical examples illustrate the proposed models. 

 
2. Preliminary definitions 
Suppose there is a discrete random variable X  defined on the sample space   and 

information about this variable is represented as a set of m  interval-valued expectations of 

functions 1( ),..., ( )mf X f X . Denote these lower and upper expectations i ia f E  and i ia fE , 

1,...,i m . In terms of the theory of imprecise probabilities the corresponding functions ( )if X  and 

interval-valued expectations ifE  and 
ifE , 1,...,i m , are called gambles and lower and upper 

previsions, respectively. We can model various types of information by means of lower and upper 

previsions. For example, if if  is the indicator function of an event A , then previsions ifE  and 
ifE  

can be regarded as lower and upper probabilities of the event A . If ( )if X X , then XE  and XE  

are bounds for the mean value of the corresponding random variable. The lower and upper 

previsions ifE  and 
ifE  can be regarded as bounds for an unknown precise prevision ifE  which 

will be called a linear prevision. 

For computing new previsions gE  and gE  of a gamble ( )g X  from the available 

information, natural extension can be used. Natural extension is a general mathematical procedure 
for calculating new previsions from initial judgments. It produces a coherent overall model from a 
certain collection of imprecise probability judgments and may be seen as the basic constructive 
step in interval-valued statistical reasoning. It is written as the following optimization problems: 

min ( ) ( ), max ( ) ( ),
p p

x x

g g x p x g g x p x
 

  E E     (1) 

subject to  

( ) 0, ( ) 1, ( ) ( ) , .ii i

x x

p x p x a f x p x a i m
 

         (2) 

Here the minimum and maximum are taken over a set of all possible probability distributions 
{ ( )}p x  satisfying conditions (2). 

Optimization problems (1)-(2) can be explained as follows. The linear prevision gE  can be 

computed as  

( ) ( ).
x

g g x p x


E  
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However, we do not know the distribution p  because our initial information is restricted 

only by the lower and upper previsions ifE  and 
ifE , 1,...,i m , and there is no information about 

distributions of X . At the same time, the available lower and upper previsions produce the set of 
possible distributions that are consistent with these previsions. This means that we can find only 

the largest and smallest possible values of gE  for all distributions from the set { ( )}p x . It can be 

carried out by solving optimization problems (1)-(2). 
It should be noted that problems (1)-(2) are linear and the dual optimization problems can be 

written as follows [8,13]:  

 
0

0
, ,

1

min , ( ),
i i

m

i ii i
c c d

i

g c c a d a g g


 
      

 
E E E    (3) 

subject to ic , id R , 0c R , 1,...,i m , and x  ,    (4) 

 0

1

( ) ( ).
m

i i i

i

c c d f x g x


    

Here 0c , ic , id  are the optimization variables such that 0c  corresponds to the constraint 

( ) 1x p x  , ic  corresponds to the constraint ( ) ( )x i if x p x f  E , and id  corresponds to the 

constraint ( ) ( )xi if f x p x E . The optimization variables ic , id , 1,...,i m , are defined on all 

positive real number R , the variable 0c  is defined on the set of all real numbers R . It turns out 

that in many applications the dual optimization problems are simpler in comparison with problems 
(1)-(2) because this representation allows avoiding the situation when a number of the 
optimization variables is infinite. Of course, the dual optimization problems have generally an 
infinite number of constraints each of them is defined by a value of x . However, as it will be shown 
below, the number of constraints can be reduced to a finite number. 

 
3. The problem statement 
In the probabilistic approach, experts are typically asked about quantiles of a random 

variable X  defined on a sample space  . The smallest number x , such that 

Pr{ } /100X x k  , is called the %k  quantile and denoted %qk . In this approach the experts are 

often asked to supply the 5%, 50% and the 95% quantiles. In other words, an expert supplies 1x , 2x  

and 3x  such that 1Pr{ } 0.05X x  , 2Pr{ } 0.5X x   and 3Pr{ } 0.95X x  , respectively. Based 

on these values, and on the choice of a parameterized family of distribution functions, a fitted 
distribution function is chosen that represents the available information in some best way to some 
extent. 

Suppose that n  experts provide their judgments about iq , 1,...,i n , quantiles of an 

unknown cumulative discrete probability distribution of the random variable X . In particular, the 

experts may provide judgments about one q  quantile ,  i.e., iq q , i n  . This information can be 

represented as  

Pr{ } , 1,..., ,i iX x q i n    

where points ix , 1,...,i n , are elicited from experts. 

In terms of the imprecise probability theory, the probability iq  can be viewed as identical 

lower and upper previsions of the gamble [0, ]( )
ixI X , i.e., 

[0, ] [0, ]( ) ( )
i ix xI X I XE E . We assume that 

the sample space 0 1{ , ,..., }Nx x x   is discrete and finite for simplicity. As pointed out in [4], 

experts better supply intervals rather than point-values because their knowledge is not only of 
limited reliability, but also imprecise. In other words, experts provide some intervals of quantiles in 

the form [ , ]iii x xX . This information can be formally written as 

Pr{ [ , ]} , 1,..., .ii iX x x q i n    
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It can be seen from Fig.1 that this interval produces a set of probability distributions such 

that a lower distribution contains the point ( )iq x  and the upper one contains the point ( )iq x . Now 

the question arises. How to interpret the intervals of quantiles? It depends on experts, i.e., on their 
imagination of interval quantiles. Two models of the expert imagination can be marked out. The 
first model corresponds to the expert judgment: "I do not know exactly the true value of the 

quantile, but one of the values in the interval [ , ]iix x  is true". The second model corresponds to the 

expert judgment: "All points in the interval [ , ]iix x  are true values of the quantile". Of course, the 

first model is more common in practice of elicitation of judgments from experts. Therefore, we will 
deal with the imprecise judgments by considering them from the first model point of view. 

Our aim is to find parameters of an unknown distribution of X , which can be represented as 
expectations gE  of some functions ( )g X . 

 
Fig. 1. An example of distributions corresponding to the interval-valued quantile 

 
4. First-order model 

Suppose that we know precise values of iq  quantiles it , 1,...,i n . Denote 1( ,..., )nt tT  and 

let { }gE T  and { }gE T  be lower and upper previsions of the function g  under condition of precise 

values it  of quantiles. By using the natural extension for computing the lower prevision of the 

function g , we get the following linear programming problem:  

0

0
,

1

{ } max ,
i

n

i i
c w

i

g c w q


 
  

 
E T      (5) 

subject to iw R , 0c R , 1,...,i n , and x  ,  

0 [0, ]

1

( ) ( ).
i

n

i t

i

c w I x g x


        (6) 

Here iw , 1,...,i n , are optimization variables obtained by replacing variables ic  and id  in 

(3)-(4) due to the equality i i ia a q  , i.e., i i iw c d  . The upper prevision { }gE T  is computed as  

0
0

,
1

{ } min ,
i

n

i i
c w

i

g c w q


 
  

 
E T      (7) 

subject to iw R , 0c R , 1,...,i n , and x  ,  

0 [0, ]

1

( ) ( ).
i

n

i t

i

c w I x g x


        (8) 

These optimization problems can be easily derived from (3)-(4). 
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Proposition 1. Suppose that 1 2 ... nq q q   . Denote 0 0q  , 1 1nq   , 0 0t x , and 

1n Nt x  . Then solutions to problems (5)-(6) and (7)-(8) exist if 1 2 ... nt t t   . Denote  


0 1 1

1

{ } ( ) ( )( ),
n

i i i

i

g g x q g t q q



  E T     (9) 


1

1

{ } ( )(1 ) ( )( ).
n

N n i i i

i

g g x q g t q q 



   E T    (10) 

If the function ( )g x  is non-decreasing, then 


{ } { }g gE T E T , 


{ } { }g gE T E T . If the 

function ( )g x  is non-increasing, then 


{ } { }g gE T E T , 


{ } { }g gE T E T . 

Proof: First, we consider the case of the non-decreasing function g . It is obvious that any 

solution exists if 1 2 ... nt t t    because the judgments 1 1Pr{ }X t q   and 2 2Pr{ }X t q   by 

1 2q q  and 1 2t t  are conflicting and inconsistent. Let 1 2 ... nt t t   . Let us divide the interval 

[0, ]Nx  into 1n  adjacent subintervals 1[ , ]i it t  , 0,...,i n . Since the function g  is non-decreasing, 

then constraints to problem (5)-(6) can be rewritten as  

0 1 2 0

0 2 1

0 3 2

0

... ( ),

... ( ),

... ( ),

( ).

n

n

n

n

c w w w g t

c w w g t

c w w g t

c g t

    

   

   

 



 

Let us prove that the optimal solution to problem (5)-(6) is 0 ( )nc g t , 1( ) ( )i i iw g t g t  , 

2,...,i n , 1 0 1( ) ( )w g t g t  . This solution satisfies all constraints. Let us consider the first and the 

last constraints. Denote 1
n
i iw W   and 1

n
i i iw q WQ  . It is obvious that 1Q  . Let us rewrite (5)-

(6) as follows:  

 
0

0
,

{ } max ,
c W

g c WQ E T  

subject to WR , 0c R , and  

0 0 0( ), ( ).nc W g t c g t    

If an optimal solution to optimization problem (5)-(6) exists, then it will be a part of optimal 
solutions to the above problem because some of the constraints to the initial problem were 

removed. This problem has the following solution: 0 ( )nc g t , 0( ) ( )nW g t g t  . It follows from 

the n  -th constraint to problem (5)-(6) that 1 0 1( ) ( ) ( )n n n nw g t c g t g t     . It follows from the 

( 1)n   -th constraint that 1 2 0 2 1( ) ( ) ( ).n n n n nw g t c w g t g t         By continuing the 

determination of optimal values of iw , we get the optimal solution. By assuming 0 0t x , there 

holds  

1

1

0 1 1

1

{ } ( ) ( ( ) ( ))

( ) ( )( ).

n

n i i i

i

n

i i i

i

g g t g t g t q

g x q g t q q









  

  





E T

 

The upper bound is similarly determined. In this case, the constraints to problem (7-(8) are 
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0 1 2 1

0 2 2

0 3 3

0 1

... ( ),

... ( ),

... ( ),

( ),

n

n

n

n

c w w w g t

c w w g t

c w w g t

c g t 

    

   

   

 



 

and the optimal solution is 0 1( ) ( )n Nc g t g x  , 1( ) ( )i i iw g t g t   , 1,..., 1i n  , 

( ) ( )n n Nw g t g x  . A case of the non-increasing function g  is similarly proved.  

 

Since at least one of the points it  belonging to the interval [ , ]iix x  is a true value of the 

corresponding quantile, then there hold 

[ , ], 1,..., [ , ], 1,...,
min { }, max { }.

i ii i i it x x i n t x x i n
g g g g

   
 E E T E E T  

 

Proposition 2. Suppose that [ , ]iiit x x , 1,...,i n . If there exist such {1,..., }i n  and 

{1,..., }j n  that jix x  and i jq q , then expert judgments are conflicting. Let 


 0 1 1

1,...,
1

( ) max ( ),
n

k i i
k i

i

g g x q g x q q




  E     (11) 


  1

,...,
1

( )(1 ) min ( ).
n

kN n i i
k i n

i

g g x q g x q q 




   E    (12) 

If the function ( )g x  is non-decreasing, then 


g gE E , 


g gE E . If the function ( )g x  is 

non-increasing, then 


g gE E , 


g gE E . 

Proof: If there hold jix x  and i jq q  for any i  and j , then it is impossible to find points 

it  and jt  satisfying the condition i jt t . Consider the case of the non-decreasing function g . Then, 

according to Proposition 1, we can write  

0 1 1
[ , ], 1,..., [ , ], 1,...,

1

min { } ( ) min ( )( ).
i ii i i i

n

i i i
t x x i n t x x i n

i

g g g x q g t q q
   



   E E T  

In order to achieve the minimum, it is necessary to take minimal values of it , 1,...,i n . 

These values are ix . However, there is the additional condition of consistency 1 2 ... nt t t   . Let 

11t x . In order to satisfy the condition of consistency, we have to take 

2 1 22 1max( , ) max( , )t t x x x  . By continuing the determination of minimal values of it , we get 

1,...,max ki k it x . After substituting the optimal values of it  into the objective function, we get gE . 

The upper prevision is similarly proved. Let nnt x . In order to satisfy the condition of 

consistency, we have to take 1 11 min( , ) min( , )n n nn nt t x x x    . By continuing the determination of 

maximal values of it , we get 
,...,min ki k i nt x . The case of the non-increasing function g  is 

similarly proved. 
 

Corollary 1. If 1 2 ... nq q q q    , then  


 


 

0
1,...,

1,...,

( ) (1 ) max ,

(1 ) ( ) min .

k
k n

kN
k n

g qg x q g x

g q g x qg x





  

  

E

E
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If the function ( )g x  is non-decreasing, then 


g gE E , 


g gE E . If the function ( )g x  is 

non-increasing, then 


g gE E , 


g gE E . 

Proof: The proof follows directly from Proposition 2.  
 
Let us consider some important special cases of the function g . 

Suppose that ( , ]( ) ( )
Nxg X I X  (the corresponding lower and upper previsions are values of 

a survival function of X  at point  , i.e., Pr{ }X  ). The function ( , ]( ) ( )
Nxg X I X  is non-

decreasing and takes two values 0  and 1 . Then there hold 

 [ , ] 1 ( , ]
1,...,

1

( ) ( ) max ,
N N

n

kx i i x
k i

i

I X q q I x 




 E  

 [ , ] 1 ( , ]
,...,

1

( ) (1 ) ( ) min .
N N

n

kx n i i x
k i n

i

I X q q q I x 




   E  

If 1 ... nq q q   , then 

 [ , ] ( , ]
1,...,

( ) (1 ) max ,
N N kx x

k i
I X q I x 


 E  

 [ , ] ( , ]
,...,

( ) (1 ) min .
N N

kx x
k i n

I X q qI x 


  E  

Suppose that [0, ]( ) ( )g X I X  (the corresponding lower and upper previsions are values of a 

cumulative distribution function of X  at the point  , i.e., Pr{ }X  ). The function 

[0, ]( ) ( )g X I X  is non-increasing and takes two values 0  and 1 . Then there hold 

 [0, ] 1 [0, ]
,...,

1

( ) (1 ) ( ) min ,
n

kn i i
k i n

i

I X q q q I x 




   E  

 [0, ] 1 1 [0, ]
1,...,

1

( ) ( ) max .
n

ki i
k i

i

I X q q q I x 




  E  

If 1 ... nq q q   , then 

 [0, ] [0, ]
,...,

( ) (1 ) min ,k
k i n

I X q qI x 


  E   [0, ] [0, ]
1,...,

( ) (1 ) max .k
k i

I X q q I x 


  E  

Since the function ( ) mg X X  is non-decreasing, then the upper and lower m  -th moments 

of X  are determined as 

 0 1 1
1,...,

1

max ( ),
mn

m m

k i i
k i

i

X x q x q q




  E  

  1
,...,

1

(1 ) min ( ).
n m

m m
kN n i i

k i n
i

X x q x q q 




   E  

If 1 ... nq q q   , then there hold  

 0
1,...,

max (1 ),
m

m m

k
k n

X x q x q


  E   
,...,

(1 ) min .
m

m m
kN

k i n
X x q x q


  E  

 

Corollary 2. For any point   , there hold 
[ , ] [0, ]( ) ( ) 1

NxI X I X  E E  and 

[ , ] [0, ]( ) ( ) 1
NxI X I X  E E . 
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Proof: Let us consider the first equality. Note that if the inequality 
,...,min kk i n x    is valid, 

then the inequality 
,...,min kk i n x    is violated and vice versa. Let J  be a subset of indices 

1,...,i n , for which the inequality 
,...,min kk i n x    is valid. Then  

[ , ] [0, ] 1 1 1

1 1 1

1

( ) ( ) ( ) ( )

( ) 1,

Nx i i i i

i J i J

n

i i n

i

I X I X q q q q q

q q q q

   

 

 



     

    

 



E E

 

as was to be proved. The second equality is similarly proved.  
 
It follows from Corollary 2 that the property of coherence of imprecise probabilities is 

fulfilled for the proposed model. 
 

Proposition 3. Suppose that 1iq Q  for any 11,...,i n , 2iq Q  for any 

1 1 21,...,i n n n   ,..., i mq Q , for any 1 1... 1,...,mi n n n    , i.e., there are m  groups of 

quantiles containing in  identical values of iq , 1,...,i m . Then  


 


 

0 1 1
1,...,

1

1
,...,

1

( ) max ( ),

( )(1 ) min ( ),

m
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i

m

kN m i i
k i m

i

g g x Q g z Q Q

g g x Q g z Q Q


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






  

   





E

E

 

where 
1 1 11 1 1 ... 1,..., ...... 1,..., ...

max , min
k kk k

k lk l
l n n n nl n n n n

z x z x
           

   

Proof: Let us consider the case of 2m   for simplicity. Then there holds  


   

   
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1 1
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    

    

 E

 

Note that  

1 1 2

1 1 2
1,..., 1,...,

max , max max( , ).k k
k n k n n

x z x z z
  

   

Hence 


 
2

0 1 1
1,...,

1

( ) max ( ),k i i
k i

i

g g x q g z Q Q




  E  

as was to be proved. The upper bound 

gE  is similarly proved.  

 
 
Proposition 3 describes a property of decomposition of judgments. A number of experts often 

provide judgments about the same quantile. In this case, these judgments can be easily aggregated 

by computing a maximal value of lower bounds lx  and a minimal value of upper bounds lx . In 

fact, the obtained interval [ , ]kkz z  is none other than the intersection of intervals corresponding to 

the identical probabilities iq . 

Let us consider general properties of the proposed model. 
 
Proposition 4. If judgments about quantiles are non-conflicting, then the following 

properties of coherent previsions hold: 

(i) g gE E ,  
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(ii) ( )g g  E E ,  

(iii) ( )a bg a b g  E E , ( )a bg a b g  E E , b  R , a R ,  

(iiii) if x  , ( ) ( )g x f x , then g fE E  and g fE E . 

Proof: It is known that the natural extension produces coherent previsions, i.e., it follows 

from optimization problems (5)-(8) that properties (i), (ii), (iii), (iiii) are valid for { }gE T  and 

{ }gE T . Then it follows from the inequality { } { }g gE T E T  that  

[ , ], 1,..., [ , ], 1,...,

[ , ], 1,...,

min { } max { }

max { } .

i ii i i i

ii i

t x x i n t x x i n

t x x i n

g g g

g g

   

 
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 

E E T E T

E T E
 

It follows from the equality { } ( { })g g  E T E T  that  

 
[ , ], 1,..., [ , ], 1,...,

[ , ], 1,...,

min { } min ( { })

max ( { }) ( ),

i ii i i i

ii i

t x x i n t x x i n

t x x i n

g g g

g g

   

 

   

     

E E T E T

E T E
 

The third and fourth properties are similarly proved.  
 
Example 1. Suppose three experts provide their judgments about 5%, 50%, and 95% 

quantiles of a probability distribution of a random variable X  defined on the sample space 

{0,1,...,100}  . Their judgments are given in Table 1. Let us find lower and upper expectations 

( XE , XE ) and probability distributions (
[0, ] [0, ]( ), ( )I X I X E E ,   ) of the random variable X . 

By using Proposition 2, we get 34.2X E , 77.25X E . The lower ( )F x  and upper ( )F x  

probability distributions are depicted in Fig.2. 
 

 Table    
 Table   Fig. 2. Lower and upper probability distributions elicited from three experts 

 
 
 

Table 1. Expert judgments about 5%, 50%, and 95% quantiles (L-lower, U-upper) 

E
xpert 

Quantiles 

5% 
50

% 
95

% 
L U L U L U 

1 4 
1

0 
5

4 
7

0 
8

5 
9

5 

2 1 9 
6

2 
7

0 
8

6 
9

6 

3 3 5 
5

8 
6

5 
9

0 
9

5 
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It is interesting to note that imprecision of results in Example 1 depends mainly on a number 

of types of quantiles, for which experts provide their judgments. At the same time, a number of 
experts does not influence significantly on the precision. This fact is illustrated by the following 
examples. 

 
Example 2. Let us add additional judgments about 35% quantile (see Table 2) to the 

available ones given in Example 1. Then the lower and upper expectations of X  are 37.8X E , 

67.95X E . The lower ( )F x  and upper ( )F x  probability distributions are depicted in Fig. 3. 

 Table   

 
Fig. 3. Lower and upper probability distributions by additional judgments 

 
It can be seen from Example 2 that the imprecision of obtained results is significantly 

reduced in comparison with results of Example 1. 
 
Example 3. Let us add additional judgments elicited from the fourth expert about 5%, 50%, 

and 95% quantiles (see Table 3) to the available judgments given in Example 1. Then the lower and 

upper expectations of X  are 34.75X E , 75.9X E . The lower ( )F x  and upper ( )F x  

probability distributions are almost the same as ones depicted in Fig.2. 
 
 

Table 2. Additional expert judgments about 35% quantile (L-lower, U-upper) 

Expert 
Quantiles 

35% 
L U 

1 26 40 
2 20 34 
3 28 35 

 
 
Table 3. Additional expert judgements about 5%, 50%, and 95% quantiles (L-lower, U-upper) 

 

Expert 
Quantiles 

5% 50% 95% 
L U L U L U 

4 5 6 60 63 92 94 
 
Example 3 shows that the fourth expert does not reduce the available imprecision essentially, 

but, in any case, it was reduced. The following proposition states this fact. 
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Proposition 5. The lower bound gE  does not decrease and the upper bound gE  does not 

increase by adding arbitrary non-conflicting judgments. 
Proof: Let us consider expressions (11)-(12). Suppose that the function g  is non-decreasing. 

The increasing of the lower bound is obvious. Therefore, we prove the decreasing of the upper 

bound. Suppose that we get an additional ( 1)n  -th judgment 11 1Pr{ [ , ]}nn nX x x q   . Without 

loss of generality, we assume that 1n nq q  . Let 
( )n

gE  and 
( 1)n

g


E  be upper previsions obtained by 

the given n  and 1n  judgments, respectively. Then  
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    






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because the inequalities 
,..., ,..., 1min mink kk i n k i nx x   , 1i iq q  , and 1nNx x   are valid. This 

implies that 
( ) ( 1)n n

g g


E E , as was to be proved. The proof for the non-decreasing function g  is 

similar.  
 
5. Conclusion 
The first-order model of aggregating expert judgments about imprecise quantiles has been 

proposed in the paper. The main virtue of the model is that it does not use information about a 
probability distribution of the considered random variable. Of course, this feature leads to 
imprecise results which are represented in the form of intervals of previsions. At the same time, the 
risk of possible errors in this case is reduced. The proposed model reflects the fact that expert 
judgments are imprecise and unreliable in nature. 

It is worth noticing that most obtained expressions for the first-order model are given in the 
explicit form and they do not depend on the sample space of the considered random variable. 
Moreover, they are identical for continuous and discrete random variables.  
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