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Abstract 
The objective of this paper is to develop a demand forecast model for a short life baked 

product. The initial forecast is obtained by using exponential smoothing and the error 
corresponding to each day is estimated for this forecast. A control chart is plotted for these errors 
after determining its upper control limit and lower control limit. A generalized Markov algorithm is 
applied to these errors and the demand of different states are determined. The demand 
corresponding to the state with maximum probability is taken as optimal demand. The obtained 
results can act as a basis for better planning of demand of short life baked products in India. 

Keywords: Demand; Exponential smoothing; Forecasting; Markov algorithm; Random; 
State; Planning. 

 
Introduction 
Almost all organizations analyses past sales data and predict the future sales based on this 

past data. An attempt has been done to predict future sales based on the sales data of two 
successive months collected from a reputed firm. Various statistical techniques are available for 
forecasting. Nice properties of a weighted moving average would be one where the weights not only 
decrease as older and older data are used, but one where the differences between the weights are 
―smooth‖. Obviously the desire would be for the weight on the most recent data to be the largest. 
The weights should then get progressively smaller the more periods one considers into the past. 
The exponentially decreasing weights of the basic exponential smoothing forecast fit this bill nicely. 
The forecast equation is given by: 

 
Ft+1= αDt+ (1- α) Ft, Where α is a smoothing parameter between 0 and 1. Here we assume       

α = .2.  
 
This model is best suited to time-series data. Initially demand is predicted using exponential 

smoothing method and the error of demand is modelled by using Markov method. Markov based 
algorithm can be used to forecast in that environment where limited past data is available. Further 
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random component of demand can be modelled by using Markov chain based forecasting model. 
This is because transition probabilities in Markov model represent the influence of all random 
factors. Hence we apply Markov based algorithm to the errors of forecast of the conventional model 
namely exponential smoothing. 

 
Literature review  
Bijesh and Jayadas formulated an algorithm for short life cycle supply chain based on 

Markov model (2013) [1]. The above algorithm gives us a useful and financially feasible technique 
to determine the demand forecast whenever the demand data given is randomly distributed. 
A Grey–Markov forecasting model has been developed by Huang, He and Cen in 2007. This paper 
was based on historical data of the electric-power requirement from 1985 to 2001 in China, and 
forecasted and analyzed the electric- power supply and demand in China [2]. In 2007, Akay and 
Atak have formulated a Grey prediction model with rolling mechanism for electricity demand 
forecasting of Turkey [3]. Boylan and Syntetos (2006) commented on the importance of capturing 
the combined forecasting stock control operation through metrics relating to ‗service level‘ and 
inventory costs (accuracy implication metrics); i.e., by considering what is important from a 
practitioner‘s perspective [4]. Armstrong and Green (2005) aver that ―exponential smoothing is the 
most popular and cost effective of the statistical extrapolation methods [5]. Timmermann and 
Granger (2004) highlighted the need to evaluate forecast results using utility functions. Often the 
predictive approach that is best based on a given accuracy metric will not be the one that 
outperforms competitors if utility measures are employed, such as financial outcomes, inventories, 
customer satisfaction, or socio-economic benefits [6]. Allen and Fildes (2001) review the literature 
on the advantages of using disaggregate data, one of which is the additional information available 
due to heterogeneity across individual markets. However, they also argue that the relative 
performances of aggregate and disaggregate approaches might depend on the specifics of the 
forecasting exercise. Categorical data sequences can be modelled by using Marko chains see for 
instance [8, 9 and 10]. The applications of grey model for energy forecasting problems have 
resulted in several research papers [7]. In 2001, Zhang and He have developed a Grey–Markov 
forecasting model for forecasting the total power requirement of agricultural machinery in Shangxi 
Province [11]. 

 
Estimation of parameters of model 
 
The parameters of the model are the initial probability matrix P0 and transition probability 

matrix Pij. Count the no of occurrences of each state in the given month t of the observed data to 
determine the initial probability matrix or initial probability vector P0. For any observed data 
sequence we can determine the transition probability matrix by counting the transitions from one 
particular state to all other possible states. Any subsequent matrix indicating the probability of a 
state at that time can be determined by using above two matrixes. Deduce the current probability 
vector for the succeeding months t+2, t+3 as 

P1=P0* TPM 
P2=P1* TPM 
…………….. 
Pm= Pm-1 *TPM 
 
Methodlogy 
 
1. Observed demand data for a short life cycle product is collected for any two successive 

months.  
2. Apply exponential smoothing to the collected data and estimate the errors in forecasting 

for all the days of two successive months. 
3. Errors are plotted on a control chart in the order that they occur. The centerline of the 

chart represents an error of zero. Note the two other lines, one above and one below the centerline. 
They are called the upper and lower control limits because they represent the upper and lower ends 
of the range of acceptable variation for the errors. 



European Journal of Technology and Design, 2014, Vol.(5), № 3 

110 

 

4. In order for the forecast errors to be judged ―in control‖ (i.e., random), two things are 
necessary. One is that all errors are within the control limits. The other is that no patterns (e.g., 
trends, cycles, and no centered data) are present. 

5. Implement the generalized algorithm based on Markov method for the errors of the 
forecasted model. 

6. Deduce the initial probability matrix and the Transition probability matrix for the 
different states of errors of demand. 

7. By utilizing the above two matrices the probability of different states of demand for any 
future period can be determined. The evolution of the system is determined by multiplying the 
transition matrix by the previous state vector (probability matrix), which is a stochastic vector 
representing the probabilities of the system being in any one of the given states 

8. Choose the state with maximum probability from the obtained current probability vector  
9. Determine the annual savings by adopting the demand of the state with maximum 

probability. 
 
Algoritm for demand prediction based on the combined exponential smoothing 

and markov based analysis 
 
1. Collect the observed data for sales of a particular product with minimum shelf life for any 

two consecutive or successive months, say t and t+1. 
2. Apply exponential smoothing to the collected data and estimate the errors in forecasting 

for all the days of two successive months. 
3. Determine the upper limit and lower limit of the errors in forecasting by exponential 

smoothing for the tth month. Determine the range or band width of the error as the difference 
between upper limit and lower limit for the tth month. 

4. Discretize the obtained range into states or class intervals with minimum possible no of 
sample size. Let us denote these states as X1, X2, X3………..Xn. 

5. Determine the initial probability vector P0 for the month t. This matrix gives the initial 
probability of all states say X1, X2, X3………..Xn in month t. 

a. List out all the days (m) in a month in the month t as the first column, in the ascending 
order of the table. 

b. In second column enter the state of the observed error for all the days of tth month listed 
in the first column. 

c. Count the no of occurrence of each state in tth month. (For eg. say state Xi is occurring j 
times in the month t of m days, then initial probability of Xi= j/m). 

d. Determine the initial probability of all states by using the formulae Xi= J/M where J is 
the occurrence of ith state in tth month of M days and i= 1, 2, 3…….n.. 

e. Represent the initial probabilities obtained from step 8 as a row vector (1*n) with n no of 
entries and is called as initial probability vector denoted by P0. 

6. Construct state occurrence table for tth month and t+1th month. 
a. List out all the days of tth and t+1th month in the ascending order as the first column of 

the table. Assume the number of working days in both months as same. 
b. In the second column of the table enter the state corresponding to errors in forecasting 

for all the days listed in tth month. 
c. In column three enter the state corresponding to errors of forecasting for all days listed 

in the t+1th month. 
7. Deduce transition probability matrix from the event occurrence table. 

a. Any current state Xi in a particular day of tth month can transform into states X1, X2, 

X3………..Xn during the same day of t+1th month. Hence there exits n probabilities which results 
from the probable transformation of current state Xi to other possible states X1, X2, X3………..Xn. 

Represent these probabilities as P11,P12………..P1n. 

b. Form the Transition probability matrix by representing all the current states as rows and 
next states as columns. Now enter the probabilities as P11, P12………..P1n in 1st row and repeat the same 
procedure for other rows. Any entry say Pij= No of transformations of current state i of tth month  in 
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a particular day to next state j of t+1th month in the same day/ Total no of occurrence of current 
state i in the tth month. 

8. Deduce the current probability vector for the succeeding months t+2, t+3 as 
         P1=P0* TPM 
         P2=P1* TPM 
         ……………… 
         Pm= Pm-1 *TPM 
9. Choose the state with maximum probability from the obtained current probability vector 

for say the mth month which is a row matrix with probability of each state during say mth month. 
10.  Determine the possible profit to firm by the adoption of this state of production as 

indicated by the step 8. 
 
Case study based on indian scenario 
 
The data of sales of a reputed firm was collected for two months and the combined concept of 

exponential smoothing and Markov based algorithm was applied for it. The firm is selling this item 
@ Rs 30. Any leftover item is discarded. Cost of each item is Rs16. 
 

Table 1 
 

SL.NO SALES(OCT) DISCARDED PRODN SALES(NOV) DISCARDED PRODN 
1 34 11 45 35 12 47 
2 37 8 45 38 6 44 
3 39 6 45 38 5 43 
4 29 16 45 35 11 46 
5 36 10 46 37 9 46 
6 11 14 25 17 6 23 
7 15 10 25 13 9 22 
8 37 10 47 33 10 43 
9 39 6 45 33 13 46 
10 38 11 49 36 11 47 
11 34 14 48 36 11 47 
12 37 8 45 37 9 46 
13 16 8 24 34 10 44 
14 12 13 25 22 3 25 
15 41 5 46 30 6 36 
16 37 11 48 35 8 43 
17 39 9 48 34 10 44 
18 32 16 48 33 12 45 
19 38 12 50 18 6 24 
20 15 9 24 19 7 26 
21 14 8 22 16 6 22 
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1 Baked product forecast 
 

Table 2 
 

SL.NO Demand 
October 

Demand 
November 

Forecast 
October 

Forecast 
October 

Error 
September 

Error 
October 

1 34 35 30 30 4 5 
2 37 38 31 30 6 8 
3 39 38 31 30 8 8 
4 29 35 32 30 -3 5 
5 36 37 30 31 6 6 
6 11 17 31 31 -20 -14 
7 15 13 26 31 -11 -18 
8 37 33 27 30 10 3 
9 39 33 31 29 8 4 
10 38 36 32 29 6 7 
11 34 36 32 31 2 5 
12 37 37 31 32 6 5 
13 16 34 31 33 -15 1 
14 12 22 27 33 -15 -11 
15 41 30 26 31 15 -1 
16 37 35 32 31 5 4 
17 39 34 31 32 8 2 
18 32 33 32 32 0 1 
19 38 18 30 32 8 -14 
20 15 19 32 29 -17 -10 
21 14 16 27 27 -13 -11 

 
2 Demand plot for october 

 
Figure 1 
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2 Demand plot for november 

 
Figure 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 Forecast plot for october 
 

Figure 3 
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2 Forecast plot for november 

 
Figure 4 

 

 
 
 
 
3 Control charts for errors 
 
For constructing a control chart, first determine the MSE. The square root of MSE is used in 

practice as an estimate of the standard deviation of the distribution of errors. Control charts are 
based on the assumption that when errors are random, they will be distributed according to a 
normal distribution around a mean of zero. For a normal distribution, approximately 95.5 percent 
of the values (errors in this case) can be expected to fall within limits -2S and +2S. 

 
S= (MSE) ^.5 
UCL= 0+2S 
LCL=0-2S 
MSE or Mean squared error = ∑e^2/ (n-1) 
Where e is the error and n is the sample size. 
For October, S=10.25 
2S= 20.5 
UCL = 0 + 20.5 
LCL = 0 – 20.5 
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Control chart of errors in demand for october 
 

Figure 5 
 

 
 
For November, S= 8.42 
2S= 16.84 
UCL = 0 + 16.84 
LCL = 0 – 16.84 
 
Control chart of errors in demand for november 

 
Figure 6 
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3. Construction of states 
 
The error corresponding to 7th day is out of control and hence the demand of the above date is 

discarded for the month of November. From the original data the Markov based algorithm is used 
to predict a single estimate of demand. For this purpose the demand is forecasted by using 
exponential smoothing method for two consecutive months and error of demand is estimated as 
the difference between actual demand and forecasted value for each day. Thus we have data 
pertaining to error of demand for all the days of a month. These errors are divided into equal 
portions called as states. At first the difference between maximum value of error and minimum 
value of error is determined giving the range of the errors. In this case the range is 36. Fixing the 
width as 4, we have 9 states representing the errors and there by the corresponding demand.  

 
4 Deduction of initial probability matrix 

 
Table 3 

 
Class interval of 
error of demand 

State No of occurrence Probability 

-20,-19,-18,-17 X1 2 0.1 
-16,-15,-14,-13 X2 3 0.15 
-12, -11,-10, -9 X3 0 0 

-8, -7,-6, -5 X4 0 0 
-4-3,-2-1 X5 1 0.05 
0, 1,2, 3 X6 2 0.1 
4,5,6, 7 X7 6 0.3 

8,9,10,11 X8 5 0.25 
12,13,14,15 X9 1 0.05 

 
The Fourth column of the above table gives initial probability vector P0 for the month 

October. This matrix gives the initial probability of all states say X1, X2…X12 in the month of October. 
 
P0 = [0.1, 0.15, 0, 0, 0.05, 0.1, 0.3, 0.25, 0.05] 
 
5. Computation of transition probability matrix 
 
State transition table 
 

Table 4 
 

Day Current state (October) Subsequent state (November) 
1 7 7 
2 7 8 
3 8 8 
4 5 7 
5 7 7 
6 1 2 
8 8 6 
9 8 7 
10 7 7 
11 6 7 
12 7 7 
13 2 6 
14 2 3 
15 9 5 
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16 7 7 
17 8 6 
18 6 6 
19 8 2 
20 1 3 
21 2 3 

 
Transition Probability Matrix 

 
Table 5 

 
 1 2 3 4 5 6 7 8 9 

1 
 0 0 1 0 0 0 0 0 0 

2 
 0 0 0.67 0 0 0.33 0 0 0 

3 
 0 0 0 0 0 0 0 0 0 

4 
 0 0 0 0 0 0 0 0 0 

5 
 0 0 0 0 0 0 1 0 0 

6 
 0 0 0 0 0 0.5 0.5 0 0 

7 
 0 0 0 0 0 0 0.833 0.167 0 

8 
 0 0.2 0 0 0 0.4 0.2 0.2 0 

9 
 0 0 0 0 1 0 0 0 0 

 
6 Deduction of current probability matrix for suceeding months 

 
Table 6 

 
P0 0.1 0.15,  0 0 0.05 0.1  0.30 .25 0.05 

P1 0  0.0500     0.2500          0     0.0500     0.1500     0.3999     0.1001          0 

P2 0     0.0200     0.0500          0          0     0.1150     0.4781     0.0868          0 

P3 0 
 

0.0174     0.0200          0 0             0.0922     0.4732     0.0972          0 

P4 0     0.0194     0.0174          0 0 0.0850 0.4597     0.0985          0 
P5 0 0.0193     0.0197          0 0 0.0819     0.4451     0.0965          0 

P6 0     0.0193     0.0205 0 0 0.0795     0.4310     0.0936          0 
 

Probability V/s Time Graph For the state with highest probability 
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Figure 7 
 

 
 

7 Deduction of single point estimate of demand 
 
The maximum probability is for state 7 with errors 4, 5, 6 and 7. The corresponding demands 

are 34, 36, 37 and 38. To determine the single point estimate of demand, the annual profit by 
adopting each of the above demand is determined. The demand with maximum profit is selected as 
the optimum forecast. For this purpose we are introducing the general formulae [S*(P-C)-D*C] per 
day, where S is the actual demand for a day, D is the discarded items per day (Actual demand-
Forecasted demand), C is the cost of making unit quantity, S is the selling price of each product. 
The demand with maximum savings is chosen as the optimal one. 

 
8 Profits to the firm from existing forecast 

 
Table 7 

 
SL.NO ACTUAL SALES (S) FORECASTED 

DEMAND (F) 
DISCARDED 
ITEMS (D=F-S) 

PROFIT (RS) 
[S*(P-C)-D*C] 

1 34 45 11 300 
2 37 45 8 390 
3 39 45 6 450 
4 29 45 16 150 
5 36 46 10 344 
6 11 25 14 -70 
7 15 25 10 50 
8 37 47 10 358 
9 39 45 6 450 
10 38 49 11 356 
11 34 48 14 252 
12 37 45 8 390 
13 16 24 8 96 
14 12 25 13 -40 
15 41 46 5 494 
16 37 48 11 342 
17 39 48 9 402 
18 32 48 16 192 
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19 38 50 12 340 
20 15 24 9 66 
21 14 22 8 68 

         RS 5380 
 

The annual profit for the product is Rs 5380*12= Rs 64560 
Here since discarded items have positive values there is no under stocking. The under 

stocking is not considered in further analysis and whenever a negative value appears in the cell of 
discarded item, it‘s taken as zero. 

 
9 Profits to the firm when forecast is 34 items per day 

 
Table 8 

 
SL.NO ACTUAL SALES (S) FORECASTED 

DEMAND (F) 
DISCARDED 
ITEMS (D=F-S) 

PROFIT (RS) 
[S*(P-C)-D*C] 

1 34 34 0 476 
2 37 34 3 470 
3 39 34 5 466 
4 29 34 -5 406 
5 36 34 2 472 
6 11 34 -23 154 
7 15 34 -19 210 
8 37 34 3 470 
9 39 34 5 466 
10 38 34 4 468 
11 34 34 0 476 
12 37 34 3 470 
13 16 34 -18 224 
14 12 34 -22 168 
15 41 34 7 462 
16 37 34 3 470 
17 39 34 5 466 
18 32 34 -2 448 
19 38 34 4 468 
20 15 34 -19 210 
21 14 34 -20 196 

    8116 
 

The annual profit for the product is Rs 8116*12= Rs 97392 
 
10 Profits to the firm when forecast is 36 items per day 

 
Table 9 

 
SL.NO ACTUAL SALES (S) FORECASTED 

DEMAND (F) 
DISCARDED 
ITEMS (D=F-S) 

PROFIT (RS) 
[S*(P-C)-D*C] 

1 34 36 -2 476 
2 37 36 1 502 
3 39 36 3 498 
4 29 36 -7 406 
5 36 36 0 504 
6 11 36 -25 154 
7 15 36 -21 210 
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8 37 36 1 502 
9 39 36 3 498 
10 38 36 2 500 
11 34 36 -2 476 
12 37 36 1 502 
13 16 36 -20 224 
14 12 36 -24 168 
15 41 36 5 494 
16 37 36 1 502 
17 39 36 3 498 
18 32 36 -4 448 
19 38 36 2 500 
20 15 36 -21 210 
21 14 36 -22 196 

    8468 
 

The annual profit for the product is Rs 8468*12= Rs 101616 
 
11 Profits to the firm when forecast is 37 items per day 
 

Table 10 
 

SL.NO ACTUAL SALES (S) FORECASTED 
DEMAND (F) 

DISCARDED 
ITEMS (D=F-S) 

PROFIT (RS) 
[S*(P-C)-D*C] 

1 34 37 -3 476 
2 37 37 0 518 
3 39 37 2 514 
4 29 37 -8 406 
5 36 37 -1 504 
6 11 37 -26 154 
7 15 37 -22 210 
8 37 37 0 518 
9 39 37 2 514 
10 38 37 1 516 
11 34 37 -3 476 
12 37 37 0 518 
13 16 37 -21 224 
14 12 37 -25 168 
15 41 37 4 510 
16 37 37 0 518 
17 39 37 2 514 
18 32 37 -5 448 
19 38 37 1 516 
20 15 37 -22 210 
21 14 37 -23 196 

    8628 
 

The annual profit for the product is Rs 8628*12= Rs 103536 
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12 Profits to the firm when forecast is 38 items per day 
 

Table 11 
 

SL.NO ACTUAL SALES (S) FORECASTED 
DEMAND (F) 

DISCARDED 
ITEMS (D=F-S) 

PROFIT (RS) 
[S*(P-C)-D*C] 

1 34 38 -4 476 
2 37 38 -1 518 
3 39 38 1 530 
4 29 38 -9 406 
5 36 38 -2 504 
6 11 38 -27 154 
7 15 38 -23 210 
8 37 38 -1 518 
9 39 38 1 530 
10 38 38 0 532 
11 34 38 -4 476 
12 37 38 -1 534 
13 16 38 -22 224 
14 12 38 -26 168 
15 41 38 3 526 
16 37 38 -1 518 
17 39 38 1 530 
18 32 38 -6 448 
19 38 38 0 532 
20 15 38 -23 210 

   21 14 38 -24 196 
    8740 

 
The annual profit for the product is Rs 8740*12= Rs 104880 
 
Result 
To determine the single point estimate of demand, the annual profit by adopting each of the 

forecasted demand namely 34, 36, 37 and 38 items are determined. These annual profits are shown 
below. 
 

Table 12 
 

Forecasted Demand Annual Profit in Rs 
34 97392 
36 101616 
37 103536 
38 104880 

 
The optimal predicted demand with maximum savings is 38 items. 
 
Conclusion 
A composite algorithm for determining the demand was developed by incorporating Markov 

analysis and Exponential smoothing. This algorithm can be used to predict demand of those 
products with little available time series data. This algorithm takes care of both systematic and 
random component of demand. The algorithm has been validated by implementing it in a baking 
firm and by the huge annual savings Rs40320/ product when compared to existing practice. 
The annual savings can be multiplied by applying it to many similar products. Further this can be 
modified by incorporating Markov based analysis to other existing statistical methods and 



European Journal of Technology and Design, 2014, Vol.(5), № 3 

122 

 

estimating the annual savings it can bring to a particular product. These algorithms can be 
compared on the basis of annual savings that it brings to the firm 
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